Characterization of Robust and Free-Standing 2D-Nanomembranes of UV-Polymerized Diacetylene Lipids
Free-standing lipid membranes are promising as artificial functional membrane systems for application in separation, filtration, and nanopore sensing. To improve the mechanical properties of lipid membranes, UV-polymerized lipids have been introduced. We investigated free-standing as well as substra...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 34(2018), 10 vom: 13. März, Seite 3256-3263 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2018
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Lipid Bilayers Lipids |
Zusammenfassung: | Free-standing lipid membranes are promising as artificial functional membrane systems for application in separation, filtration, and nanopore sensing. To improve the mechanical properties of lipid membranes, UV-polymerized lipids have been introduced. We investigated free-standing as well as substrate-supported monolayers of 1-palmitoyl-2-(10,12-tricosadiynoyl)- sn-glycero-3-phosphoethanolamine (PTPE) and 1,2-bis(10,12-tricosadiynoyl)- sn-glycero-3-phosphocholine (DiynePC) and characterized them with respect to their structure, morphology, and stability. Using helium ion microscopy (HIM), we were able to visualize the integrity of the lipid 2D-nanomembranes spanning micrometer-sized voids under high-vacuum conditions. Atomic force microscopy (AFM) investigations under ambient conditions revealed formation of intact and robust pore-spanning 2D-nanomembranes up to 8 × 2 μm2 in size. Analysis by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) verified a distinct reduction of signal at 2143 cm-1 from diacetylene groups in the 2D-nanomembranes after UV-polymerization. Further high-resolution AFM investigations of unpolymerized lipid monolayers revealed a well-ordered two-dimensional network, when deposited on highly oriented pyrolytic graphite (HOPG). These structures were inhibited for polymerized adlayers. Structural models for the molecular arrangement of the adlayers are proposed and discussed |
---|---|
Beschreibung: | Date Completed 24.09.2018 Date Revised 24.09.2018 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.7b03403 |