|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM280117329 |
003 |
DE-627 |
005 |
20231225024610.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201706279
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0933.xml
|
035 |
|
|
|a (DE-627)NLM280117329
|
035 |
|
|
|a (NLM)29349907
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chen, Guangbo
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Accelerated Hydrogen Evolution Kinetics on NiFe-Layered Double Hydroxide Electrocatalysts by Tailoring Water Dissociation Active Sites
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 01.08.2018
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Owing to its earth abundance, low kinetic overpotential, and superior stability, NiFe-layered double hydroxide (NiFe-LDH) has emerged as a promising electrocatalyst for catalyzing water splitting, especially oxygen evolution reaction (OER), in alkaline solutions. Unfortunately, as a result of extremely sluggish water dissociation kinetics (Volmer step), hydrogen evolution reaction (HER) activity of the NiFe-LDH is rather poor in alkaline environment. Here a novel strategy is demonstrated for substantially accelerating the hydrogen evolution kinetics of the NiFe-LDH by partially substituting Fe atoms with Ru. In a 1 m KOH solution, the as-synthesized Ru-doped NiFe-LDH nanosheets (NiFeRu-LDH) exhibit excellent HER performance with an overpotential of 29 mV at 10 mA cm-2 , which is much lower than those of noble metal Pt/C and reported electrocatalysts. Both experimental and theoretical results reveal that the introduction of Ru atoms into NiFe-LDH can efficiently reduce energy barrier of the Volmer step, eventually accelerating its HER kinetics. Benefitting from its outstanding HER activity and remained excellent OER activity, the NiFeRu-LDH steadily drives an alkaline electrolyzer with a current density of 10 mA cm-2 at a cell voltage of 1.52 V, which is much lower than the values for Pt/C-Ir/C couple and state-of-the-art overall water-splitting electrocatalysts
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a NiFe-layered double hydroxide
|
650 |
|
4 |
|a electrocatalysis
|
650 |
|
4 |
|a hydrogen evolution reaction
|
650 |
|
4 |
|a ruthenium
|
650 |
|
4 |
|a water dissociation
|
700 |
1 |
|
|a Wang, Tao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Jian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Pan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Hanjun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhuang, Xiaodong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Mingwei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Feng, Xinliang
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 30(2018), 10 vom: 18. März
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2018
|g number:10
|g day:18
|g month:03
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201706279
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2018
|e 10
|b 18
|c 03
|