Accelerated Hydrogen Evolution Kinetics on NiFe-Layered Double Hydroxide Electrocatalysts by Tailoring Water Dissociation Active Sites
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 10 vom: 18. März |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2018
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article NiFe-layered double hydroxide electrocatalysis hydrogen evolution reaction ruthenium water dissociation |
Zusammenfassung: | © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Owing to its earth abundance, low kinetic overpotential, and superior stability, NiFe-layered double hydroxide (NiFe-LDH) has emerged as a promising electrocatalyst for catalyzing water splitting, especially oxygen evolution reaction (OER), in alkaline solutions. Unfortunately, as a result of extremely sluggish water dissociation kinetics (Volmer step), hydrogen evolution reaction (HER) activity of the NiFe-LDH is rather poor in alkaline environment. Here a novel strategy is demonstrated for substantially accelerating the hydrogen evolution kinetics of the NiFe-LDH by partially substituting Fe atoms with Ru. In a 1 m KOH solution, the as-synthesized Ru-doped NiFe-LDH nanosheets (NiFeRu-LDH) exhibit excellent HER performance with an overpotential of 29 mV at 10 mA cm-2 , which is much lower than those of noble metal Pt/C and reported electrocatalysts. Both experimental and theoretical results reveal that the introduction of Ru atoms into NiFe-LDH can efficiently reduce energy barrier of the Volmer step, eventually accelerating its HER kinetics. Benefitting from its outstanding HER activity and remained excellent OER activity, the NiFeRu-LDH steadily drives an alkaline electrolyzer with a current density of 10 mA cm-2 at a cell voltage of 1.52 V, which is much lower than the values for Pt/C-Ir/C couple and state-of-the-art overall water-splitting electrocatalysts |
---|---|
Beschreibung: | Date Completed 01.08.2018 Date Revised 30.09.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201706279 |