Synthesis of Crystalline Black Phosphorus Thin Film on Sapphire
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
| Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 6 vom: 15. Feb. |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , , , , , , , , , , , , , , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2018
|
| Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
| Schlagworte: | Journal Article boron nitride/black phosphorus heterostructures phase transitions wafer-scale black phosphorus synthesis |
| Zusammenfassung: | © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Black phosphorus (BP) has recently attracted significant attention due to its exceptional physical properties. Currently, high-quality few-layer and thin-film BP are produced primarily by mechanical exfoliation, limiting their potential in future applications. Here, the synthesis of highly crystalline thin-film BP on 5 mm sapphire substrates by conversion from red to black phosphorus at 700 °C and 1.5 GPa is demonstrated. The synthesized ≈50 nm thick BP thin films are polycrystalline with a crystal domain size ranging from 40 to 70 µm long, as indicated by Raman mapping and infrared extinction spectroscopy. At room temperature, field-effect mobility of the synthesized BP thin film is found to be around 160 cm2 V-1 s-1 along armchair direction and reaches up to about 200 cm2 V-1 s-1 at around 90 K. Moreover, red phosphorus (RP) covered by exfoliated hexagonal boron nitride (hBN) before conversion shows atomically sharp hBN/BP interface and perfectly layered BP after the conversion. This demonstration represents a critical step toward the future realization of large scale, high-quality BP devices and circuits |
|---|---|
| Beschreibung: | Date Completed 01.08.2018 Date Revised 30.09.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
| ISSN: | 1521-4095 |
| DOI: | 10.1002/adma.201703748 |