Focusing X-ray free-electron laser pulses using Kirkpatrick-Baez mirrors at the NCI hutch of the PAL-XFEL
The Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL) is a recently commissioned X-ray free-electron laser (XFEL) facility that provides intense ultrashort X-ray pulses based on the self-amplified spontaneous emission process. The nano-crystallography and coherent imaging (NCI) hutc...
Publié dans: | Journal of synchrotron radiation. - 1994. - 25(2018), Pt 1 vom: 01. Jan., Seite 289-292 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2018
|
Accès à la collection: | Journal of synchrotron radiation |
Sujets: | Journal Article KB mirror NCI PAL-XFEL X-ray free-electron laser X-ray optics microfocusing |
Résumé: | The Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL) is a recently commissioned X-ray free-electron laser (XFEL) facility that provides intense ultrashort X-ray pulses based on the self-amplified spontaneous emission process. The nano-crystallography and coherent imaging (NCI) hutch with forward-scattering geometry is located at the hard X-ray beamline of the PAL-XFEL and provides opportunities to perform serial femtosecond crystallography and coherent X-ray diffraction imaging. To produce intense high-density XFEL pulses at the interaction positions between the X-rays and various samples, a microfocusing Kirkpatrick-Baez (KB) mirror system that includes an ultra-precision manipulator has been developed. In this paper, the design of a KB mirror system that focuses the hard XFEL beam onto a fixed sample point of the NCI hutch, which is positioned along the hard XFEL beamline, is described. The focusing system produces a two-dimensional focusing beam at approximately 2 µm scale across the 2-11 keV photon energy range. XFEL pulses of 9.7 keV energy were successfully focused onto an area of size 1.94 µm × 2.08 µm FWHM |
---|---|
Description: | Date Revised 20.11.2019 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1600-5775 |
DOI: | 10.1107/S1600577517016186 |