B-factor profile prediction for RNA flexibility using support vector machines

© 2017 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 39(2018), 8 vom: 30. März, Seite 407-411
1. Verfasser: Guruge, Ivantha (VerfasserIn)
Weitere Verfasser: Taherzadeh, Ghazaleh, Zhan, Jian, Zhou, Yaoqi, Yang, Yuedong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't RNA flexibility support vectors regression temperature B-factor RNA, Ribosomal
Beschreibung
Zusammenfassung:© 2017 Wiley Periodicals, Inc.
Determining the flexibility of structured biomolecules is important for understanding their biological functions. One quantitative measurement of flexibility is the atomic Debye-Waller factor or temperature B-factor. Most existing studies are limited to temperature B-factors of proteins and their prediction. Only one method attempted to predict temperature B-factors of ribosomal RNA. Here, we developed and compared machine-learning techniques in prediction of temperature B-factors of RNAs. The best model based on Support Vector Machines yields Pearson's correction coefficient at 0.51 for fivefold cross validation and 0.50 for the independent test. Analysis of the performance indicates that the model has the best performance on rRNAs, tRNAs, and protein-bound RNAs, for long chains in particular. The server is available at http://sparks-lab.org/server/RNAflex. © 2017 Wiley Periodicals, Inc
Beschreibung:Date Completed 18.09.2019
Date Revised 18.09.2019
published: Print-Electronic
Citation Status MEDLINE
ISSN:1096-987X
DOI:10.1002/jcc.25124