B-factor profile prediction for RNA flexibility using support vector machines

© 2017 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 39(2018), 8 vom: 30. März, Seite 407-411
1. Verfasser: Guruge, Ivantha (VerfasserIn)
Weitere Verfasser: Taherzadeh, Ghazaleh, Zhan, Jian, Zhou, Yaoqi, Yang, Yuedong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't RNA flexibility support vectors regression temperature B-factor RNA, Ribosomal
LEADER 01000naa a22002652 4500
001 NLM278307345
003 DE-627
005 20231225020247.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.25124  |2 doi 
028 5 2 |a pubmed24n0927.xml 
035 |a (DE-627)NLM278307345 
035 |a (NLM)29164646 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Guruge, Ivantha  |e verfasserin  |4 aut 
245 1 0 |a B-factor profile prediction for RNA flexibility using support vector machines 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.09.2019 
500 |a Date Revised 18.09.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2017 Wiley Periodicals, Inc. 
520 |a Determining the flexibility of structured biomolecules is important for understanding their biological functions. One quantitative measurement of flexibility is the atomic Debye-Waller factor or temperature B-factor. Most existing studies are limited to temperature B-factors of proteins and their prediction. Only one method attempted to predict temperature B-factors of ribosomal RNA. Here, we developed and compared machine-learning techniques in prediction of temperature B-factors of RNAs. The best model based on Support Vector Machines yields Pearson's correction coefficient at 0.51 for fivefold cross validation and 0.50 for the independent test. Analysis of the performance indicates that the model has the best performance on rRNAs, tRNAs, and protein-bound RNAs, for long chains in particular. The server is available at http://sparks-lab.org/server/RNAflex. © 2017 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a RNA flexibility 
650 4 |a support vectors regression 
650 4 |a temperature B-factor 
650 7 |a RNA, Ribosomal  |2 NLM 
700 1 |a Taherzadeh, Ghazaleh  |e verfasserin  |4 aut 
700 1 |a Zhan, Jian  |e verfasserin  |4 aut 
700 1 |a Zhou, Yaoqi  |e verfasserin  |4 aut 
700 1 |a Yang, Yuedong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 39(2018), 8 vom: 30. März, Seite 407-411  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:39  |g year:2018  |g number:8  |g day:30  |g month:03  |g pages:407-411 
856 4 0 |u http://dx.doi.org/10.1002/jcc.25124  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2018  |e 8  |b 30  |c 03  |h 407-411