VirD5 is required for efficient Agrobacterium infection and interacts with Arabidopsis VIP2

© 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 217(2018), 2 vom: 30. Jan., Seite 726-738
1. Verfasser: Wang, Yafei (VerfasserIn)
Weitere Verfasser: Zhang, Shaojuan, Huang, Fei, Zhou, Xu, Chen, Zhuo, Peng, Wei, Luo, Meizhong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Agrobacterium tumefaciens Arabidopsis VIP2 VirD5 cap-binding proteins (CBPs) plant transformation plant tumor Arabidopsis Proteins mehr... Transcription Factors, General VIP2 protein, Arabidopsis Virulence Factors
Beschreibung
Zusammenfassung:© 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
During Agrobacterium (Agrobacterium tumefaciens) infection, the translocated virulence proteins (VirD2, VirE2, VirE3, VirF and VirD5) play crucial roles. It is thought that, through protein-protein interactions, Agrobacterium uses and abuses host plant factors and systems to facilitate its infection. Although some molecular functions have been revealed, the roles of VirD5 still need to be further elucidated. Here, plant transformation and tumorigenesis mediated by genetically modified Agrobacterium strains were performed to examine VirD5 roles. In addition, protein-protein interaction-associated molecular and biochemistry technologies were used to reveal and elucidate VirD5 interaction with Arabidopsis VirE2 interacting protein 2 (VIP2). Our results showed that deleting virD5 from Agrobacterium reduced its tumor formation ability and stable transformation efficiency but did not affect the transient transformation efficiency. We also found that VirD5 can interact with Arabidopsis VIP2. Further experiments demonstrated that VirD5 can affect VIP2 binding to cap-binding proteins (CBP20 and CBP80). The tumorigenesis efficiency for cbp80 mutant was not significantly changed, but that for cbp20, cbp20cbp80 mutants were significantly increased. This work demonstrates experimentally that VirD5 is required for efficient Agrobacterium infection and may promote this process by competitive interaction with Arabidopsis VIP2. CBP20 is involved in the Agrobacterium infection process and its effect can be synergistically enhanced by CBP80
Beschreibung:Date Completed 12.09.2019
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.14854