ghr-miR5272a-mediated regulation of GhMKK6 gene transcription contributes to the immune response in cotton

© The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

Détails bibliographiques
Publié dans:Journal of experimental botany. - 1985. - 68(2017), 21-22 vom: 16. Dez., Seite 5895-5906
Auteur principal: Wang, Chen (Auteur)
Autres auteurs: He, Xiaowen, Wang, Xinxin, Zhang, Shuxin, Guo, Xingqi
Format: Article en ligne
Langue:English
Publié: 2017
Accès à la collection:Journal of experimental botany
Sujets:Journal Article Research Support, Non-U.S. Gov't Cotton Fusarium oxysporum GhMKK6 Gossypium hirsutum feedback loop ghr-miR5272a miRNA MicroRNAs plus... Plant Proteins RNA, Plant Mitogen-Activated Protein Kinase Kinases EC 2.7.12.2
Description
Résumé:© The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Fusarium wilt is a major biotic stress affecting the productivity of cotton (Gossypium hirsutum). Although mitogen-activated protein kinase (MAPK) cascades play critical roles in plant disease resistance, their intricate regulation under fungal stress remains unclear, especially with regards to microRNA-mediated regulation of MAPK gene expression. In this study, we report that the MAPK kinase gene GhMKK6 and ghr-miR5272a work together in cotton resistance to Fusarium wilt. Silencing GhMKK6 in cotton decreased resistance to F. oxysporum by repressing the expression of known disease-resistance genes. Furthermore, although GhMKK6 played a positive role in disease resistance, excessive GhMKK6 activation caused an excessive hypersensitive response. ghr-miR5272a, a major regulator, prevents this excessive response by regulating GhMKK6 expression. ghr-miR5272a targets the GhMKK6 3'-untranslated region in cotton. Overexpressing miR5272a decreased the expression of GhMKK6 and disease-resistance genes, and increased sensitivity to F. oxysporum, yielding a similar phenotype to GhMKK6-silenced cotton. Overall, these results demonstrate that the ghr-miR5272a-mediated regulation of GhMKK6 expression contributes to the immune response in cotton, and reveal a new feedback loop mechanism in plant disease response
Description:Date Completed 07.01.2019
Date Revised 07.01.2019
published: Print
CommentIn: J Exp Bot. 2017 Dec 16;68(21-22):5685-5687. doi: 10.1093/jxb/erx385. - PMID 29267907
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erx373