|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM276157893 |
003 |
DE-627 |
005 |
20250222084443.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2017.2754254
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0920.xml
|
035 |
|
|
|a (DE-627)NLM276157893
|
035 |
|
|
|a (NLM)28945589
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wu, Shihao
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Structure-Aware Data Consolidation
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 20.11.2019
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a We present a structure-aware technique to consolidate noisy data, which we use as a pre-process for standard clustering and dimensionality reduction. Our technique is related to mean shift, but instead of seeking density modes, it reveals and consolidates continuous high density structures such as curves and surface sheets in the underlying data while ignoring noise and outliers. We provide a theoretical analysis under a Gaussian noise model, and show that our approach significantly improves the performance of many non-linear dimensionality reduction and clustering algorithms in challenging scenarios
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Bertholet, Peter
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Hui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cohen-Or, Daniel
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gong, Minglun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zwicker, Matthias
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 40(2018), 10 vom: 01. Okt., Seite 2529-2537
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:40
|g year:2018
|g number:10
|g day:01
|g month:10
|g pages:2529-2537
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2017.2754254
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 40
|j 2018
|e 10
|b 01
|c 10
|h 2529-2537
|