Structure-Aware Data Consolidation

We present a structure-aware technique to consolidate noisy data, which we use as a pre-process for standard clustering and dimensionality reduction. Our technique is related to mean shift, but instead of seeking density modes, it reveals and consolidates continuous high density structures such as c...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 10 vom: 01. Okt., Seite 2529-2537
1. Verfasser: Wu, Shihao (VerfasserIn)
Weitere Verfasser: Bertholet, Peter, Huang, Hui, Cohen-Or, Daniel, Gong, Minglun, Zwicker, Matthias
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM276157893
003 DE-627
005 20250222084443.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2754254  |2 doi 
028 5 2 |a pubmed25n0920.xml 
035 |a (DE-627)NLM276157893 
035 |a (NLM)28945589 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Shihao  |e verfasserin  |4 aut 
245 1 0 |a Structure-Aware Data Consolidation 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present a structure-aware technique to consolidate noisy data, which we use as a pre-process for standard clustering and dimensionality reduction. Our technique is related to mean shift, but instead of seeking density modes, it reveals and consolidates continuous high density structures such as curves and surface sheets in the underlying data while ignoring noise and outliers. We provide a theoretical analysis under a Gaussian noise model, and show that our approach significantly improves the performance of many non-linear dimensionality reduction and clustering algorithms in challenging scenarios 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Bertholet, Peter  |e verfasserin  |4 aut 
700 1 |a Huang, Hui  |e verfasserin  |4 aut 
700 1 |a Cohen-Or, Daniel  |e verfasserin  |4 aut 
700 1 |a Gong, Minglun  |e verfasserin  |4 aut 
700 1 |a Zwicker, Matthias  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 10 vom: 01. Okt., Seite 2529-2537  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:40  |g year:2018  |g number:10  |g day:01  |g month:10  |g pages:2529-2537 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2754254  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 10  |b 01  |c 10  |h 2529-2537