Structure-Aware Data Consolidation

We present a structure-aware technique to consolidate noisy data, which we use as a pre-process for standard clustering and dimensionality reduction. Our technique is related to mean shift, but instead of seeking density modes, it reveals and consolidates continuous high density structures such as c...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 10 vom: 01. Okt., Seite 2529-2537
1. Verfasser: Wu, Shihao (VerfasserIn)
Weitere Verfasser: Bertholet, Peter, Huang, Hui, Cohen-Or, Daniel, Gong, Minglun, Zwicker, Matthias
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:We present a structure-aware technique to consolidate noisy data, which we use as a pre-process for standard clustering and dimensionality reduction. Our technique is related to mean shift, but instead of seeking density modes, it reveals and consolidates continuous high density structures such as curves and surface sheets in the underlying data while ignoring noise and outliers. We provide a theoretical analysis under a Gaussian noise model, and show that our approach significantly improves the performance of many non-linear dimensionality reduction and clustering algorithms in challenging scenarios
Beschreibung:Date Revised 20.11.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2017.2754254