The ML-EM Algorithm is Not Optimal for Poisson Noise

The ML-EM (maximum likelihood expectation maximization) algorithm is the most popular image reconstruction method when the measurement noise is Poisson distributed. This short paper considers the problem that for a given noisy projection data set, whether the ML-EM algorithm is able to provide an ap...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on nuclear science. - 1988. - 2015(2015) vom: 21. Okt.
Auteur principal: Zeng, Gengsheng L (Auteur)
Format: Article en ligne
Langue:English
Publié: 2015
Accès à la collection:IEEE transactions on nuclear science
Sujets:Journal Article Computed tomography Poisson noise expectation maximization (EM) iterative reconstruction maximum likelihood (ML) noise weighted image reconstruction positron emission tomography (PET) single photon emission computed tomography (SPECT)