The ML-EM Algorithm is Not Optimal for Poisson Noise

The ML-EM (maximum likelihood expectation maximization) algorithm is the most popular image reconstruction method when the measurement noise is Poisson distributed. This short paper considers the problem that for a given noisy projection data set, whether the ML-EM algorithm is able to provide an ap...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science. - 1988. - 2015(2015) vom: 21. Okt.
1. Verfasser: Zeng, Gengsheng L (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on nuclear science
Schlagworte:Journal Article Computed tomography Poisson noise expectation maximization (EM) iterative reconstruction maximum likelihood (ML) noise weighted image reconstruction positron emission tomography (PET) single photon emission computed tomography (SPECT)