Zero-Shot Learning via Attribute Regression and Class Prototype Rectification

Zero-shot learning (ZSL) aims at classifying examples for unseen classes (with no training examples) given some other seen classes (with training examples). Most existing approaches exploit intermedia-level information (e.g., attributes) to transfer knowledge from seen classes to unseen classes. A c...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 2 vom: 20. Feb., Seite 637-648
1. Verfasser: Changzhi Luo (VerfasserIn)
Weitere Verfasser: Zhetao Li, Kaizhu Huang, Jiashi Feng, Meng Wang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM275310817
003 DE-627
005 20231225005406.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2745109  |2 doi 
028 5 2 |a pubmed24n0917.xml 
035 |a (DE-627)NLM275310817 
035 |a (NLM)28858797 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Changzhi Luo  |e verfasserin  |4 aut 
245 1 0 |a Zero-Shot Learning via Attribute Regression and Class Prototype Rectification 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Zero-shot learning (ZSL) aims at classifying examples for unseen classes (with no training examples) given some other seen classes (with training examples). Most existing approaches exploit intermedia-level information (e.g., attributes) to transfer knowledge from seen classes to unseen classes. A common practice is to first learn projections from samples to attributes on seen classes via a regression method, and then apply such projections to unseen classes directly. However, it turns out that such a manner of learning strategy easily causes projection domain shift problem and hubness problem, which hinder the performance of ZSL task. In this paper, we also formulate ZSL as an attribute regression problem. However, different from general regression-based solutions, the proposed approach is novel in three aspects. First, a class prototype rectification method is proposed to connect the unseen classes to the seen classes. Here, a class prototype refers to a vector representation of a class, and it is also known as a class center, class signature, or class exemplar. Second, an alternating learning scheme is proposed for jointly performing attribute regression and rectifying the class prototypes. Finally, a new objective function which takes into consideration both the attribute regression accuracy and the class prototype discrimination is proposed. By introducing such a solution, domain shift problem and hubness problem can be mitigated. Experimental results on three public datasets (i.e., CUB200-2011, SUN Attribute, and aPaY) well demonstrate the effectiveness of our approach 
650 4 |a Journal Article 
700 1 |a Zhetao Li  |e verfasserin  |4 aut 
700 1 |a Kaizhu Huang  |e verfasserin  |4 aut 
700 1 |a Jiashi Feng  |e verfasserin  |4 aut 
700 1 |a Meng Wang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 2 vom: 20. Feb., Seite 637-648  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:2  |g day:20  |g month:02  |g pages:637-648 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2745109  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 2  |b 20  |c 02  |h 637-648