Anatomical-functional image fusion by information of interest in local Laplacian filtering domain

A novel method for performing anatomical (MRI)-functional (PET or SPECT) image fusion is presented. The method merges specific feature information from input image signals of a single or multiple medical imaging modalities into a single fused image while preserving more information and generating le...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 12 vom: 20. Dez., Seite 5855-5866
1. Verfasser: Du, Jiao (VerfasserIn)
Weitere Verfasser: Li, Weisheng, Xiao, Bin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM275310779
003 DE-627
005 20231225005406.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2745202  |2 doi 
028 5 2 |a pubmed24n0917.xml 
035 |a (DE-627)NLM275310779 
035 |a (NLM)28858799 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Du, Jiao  |e verfasserin  |4 aut 
245 1 0 |a Anatomical-functional image fusion by information of interest in local Laplacian filtering domain 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.03.2019 
500 |a Date Revised 08.03.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a A novel method for performing anatomical (MRI)-functional (PET or SPECT) image fusion is presented. The method merges specific feature information from input image signals of a single or multiple medical imaging modalities into a single fused image while preserving more information and generating less distortion. The proposed method uses a local Laplacian filtering based technique realized through a novel multi-scale system architecture. Firstly, the input images are generated in a multi-scale image representation and are processed using local Laplacian filtering. Secondly, at each scale, the decomposed images are combined to produce fused approximate images using a local energy maximum scheme and produce the fused residual images using an information of interest-based scheme. Finally, a fused image is obtained using a reconstruction process that is analogous to that of conventional Laplacian pyramid transform. Experimental results computed using individual multi-scale analysis-based decomposition schemes or fusion rules clearly demonstrate the superiority of the proposed method through subjective observation as well as objective metrics. Furthermore, the proposed method can obtain better performance, compared to the state-of-the-art fusion methods 
650 4 |a Journal Article 
700 1 |a Li, Weisheng  |e verfasserin  |4 aut 
700 1 |a Xiao, Bin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 12 vom: 20. Dez., Seite 5855-5866  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:12  |g day:20  |g month:12  |g pages:5855-5866 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2745202  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 12  |b 20  |c 12  |h 5855-5866