Anatomical-functional image fusion by information of interest in local Laplacian filtering domain

A novel method for performing anatomical (MRI)-functional (PET or SPECT) image fusion is presented. The method merges specific feature information from input image signals of a single or multiple medical imaging modalities into a single fused image while preserving more information and generating le...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 12 vom: 20. Dez., Seite 5855-5866
1. Verfasser: Du, Jiao (VerfasserIn)
Weitere Verfasser: Li, Weisheng, Xiao, Bin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:A novel method for performing anatomical (MRI)-functional (PET or SPECT) image fusion is presented. The method merges specific feature information from input image signals of a single or multiple medical imaging modalities into a single fused image while preserving more information and generating less distortion. The proposed method uses a local Laplacian filtering based technique realized through a novel multi-scale system architecture. Firstly, the input images are generated in a multi-scale image representation and are processed using local Laplacian filtering. Secondly, at each scale, the decomposed images are combined to produce fused approximate images using a local energy maximum scheme and produce the fused residual images using an information of interest-based scheme. Finally, a fused image is obtained using a reconstruction process that is analogous to that of conventional Laplacian pyramid transform. Experimental results computed using individual multi-scale analysis-based decomposition schemes or fusion rules clearly demonstrate the superiority of the proposed method through subjective observation as well as objective metrics. Furthermore, the proposed method can obtain better performance, compared to the state-of-the-art fusion methods
Beschreibung:Date Completed 08.03.2019
Date Revised 08.03.2019
published: Print-Electronic
Citation Status MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2017.2745202