|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM27518711X |
003 |
DE-627 |
005 |
20231225005121.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2017 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.7b02289
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0917.xml
|
035 |
|
|
|a (DE-627)NLM27518711X
|
035 |
|
|
|a (NLM)28845996
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Silverberg, Gregory J
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Wrinkling and Periodic Folding of Graphene Oxide Monolayers by Langmuir-Blodgett Compression
|
264 |
|
1 |
|c 2017
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 23.07.2018
|
500 |
|
|
|a Date Revised 23.07.2018
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Crumples, wrinkles, and other three-dimensional topographical features in graphene oxide (GO) have been of recent interest as these features have improved material performance for a variety of applications. However, wrinkling of monolayer GO films has yet to be reported. Herein, we demonstrate wrinkling and folding of monolayer GO using the Langmuir-Blodgett technique for the first time. First, cetyltrimethylammonium bromide (CTAB) and GO are deposited on the air-water interface and uniaxially compressed to form a monolayer. CTAB enhances in-plane rigidity of the monolayer through hydrophobic tail aggregation, preventing GO-GO in-plane sliding behavior. Overcompression of the GO monolayer results in the out-of-plane periodic nanoscale wrinkling and in turn generates folds that are stable during deposition onto a substrate and GO chemical reduction. Furthermore, we investigate one potential application of this material by constructing a 3D electrode of the stacked nanofolded GO-CTAB layers that exhibits superior volumetric capacitance compared to commercial devices and comparable volumetric capacitance compared to high-performing recently reported devices. The high volumetric capacitance is attributed to the electrolyte-accessible channels generated by the nanofolds which are similar in size to the hydrated ions
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Vecitis, Chad D
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 33(2017), 38 vom: 26. Sept., Seite 9880-9888
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2017
|g number:38
|g day:26
|g month:09
|g pages:9880-9888
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.7b02289
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2017
|e 38
|b 26
|c 09
|h 9880-9888
|