CHARMM force field and molecular dynamics simulations of protonated polyethylenimine

© 2017 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 38(2017), 27 vom: 15. Okt., Seite 2335-2348
1. Verfasser: Beu, Titus Adrian (VerfasserIn)
Weitere Verfasser: Farcaş, Alexandra
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't cationic polymers force fields gene delivery molecular dynamics polyethylenimine
LEADER 01000naa a22002652 4500
001 NLM274240718
003 DE-627
005 20231225003037.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.24890  |2 doi 
028 5 2 |a pubmed24n0914.xml 
035 |a (DE-627)NLM274240718 
035 |a (NLM)28749533 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Beu, Titus Adrian  |e verfasserin  |4 aut 
245 1 0 |a CHARMM force field and molecular dynamics simulations of protonated polyethylenimine 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2017 Wiley Periodicals, Inc. 
520 |a As a gene delivery vector, polyethylenimine (PEI) shows one of the highest transfection efficiencies, while effectively protecting DNA from enzyme degradation. The distinctive charge pattern of protonated PEI is widely considered responsible for fundamental process such as DNA condensation into PEI/DNA polyplexes (which are able to enter cells via endocytosis), proton sponge effect (which triggers the release of polyplexes from endosome), and release of DNA from polyplexes (to be further processed inside the nucleus). Our investigations are largely motivated by the crucial need for a realistic molecular mechanics force field (FF) for PEI, and, accordingly, we focus on two major issues: (1) development of a new atomistic (CHARMM) FF for PEI in different protonation states, rigorously derived from high-quality ab initio calculations performed on model polymers, and (2) molecular dynamics investigations of solvated PEI, providing a detailed picture of the dynamic structuring thereof in dependence on their size and protonation state. The modeled PEI chains are essentially described in terms of gyration radius, end-to-end distance, persistence length, radial distribution functions, coordination numbers, and diffusion coefficients. They turn out to be more rigid than in other computational studies and we find diffusion coefficients in fair agreement with experimental data. The developed atomistic FF proves adequate for the realistic modeling of the size and protonation behavior of linear PEI, either as individual chains or composing polyplexes. © 2017 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a cationic polymers 
650 4 |a force fields 
650 4 |a gene delivery 
650 4 |a molecular dynamics 
650 4 |a polyethylenimine 
700 1 |a Farcaş, Alexandra  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 38(2017), 27 vom: 15. Okt., Seite 2335-2348  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:38  |g year:2017  |g number:27  |g day:15  |g month:10  |g pages:2335-2348 
856 4 0 |u http://dx.doi.org/10.1002/jcc.24890  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2017  |e 27  |b 15  |c 10  |h 2335-2348