CHARMM force field and molecular dynamics simulations of protonated polyethylenimine

© 2017 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 38(2017), 27 vom: 15. Okt., Seite 2335-2348
1. Verfasser: Beu, Titus Adrian (VerfasserIn)
Weitere Verfasser: Farcaş, Alexandra
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't cationic polymers force fields gene delivery molecular dynamics polyethylenimine
Beschreibung
Zusammenfassung:© 2017 Wiley Periodicals, Inc.
As a gene delivery vector, polyethylenimine (PEI) shows one of the highest transfection efficiencies, while effectively protecting DNA from enzyme degradation. The distinctive charge pattern of protonated PEI is widely considered responsible for fundamental process such as DNA condensation into PEI/DNA polyplexes (which are able to enter cells via endocytosis), proton sponge effect (which triggers the release of polyplexes from endosome), and release of DNA from polyplexes (to be further processed inside the nucleus). Our investigations are largely motivated by the crucial need for a realistic molecular mechanics force field (FF) for PEI, and, accordingly, we focus on two major issues: (1) development of a new atomistic (CHARMM) FF for PEI in different protonation states, rigorously derived from high-quality ab initio calculations performed on model polymers, and (2) molecular dynamics investigations of solvated PEI, providing a detailed picture of the dynamic structuring thereof in dependence on their size and protonation state. The modeled PEI chains are essentially described in terms of gyration radius, end-to-end distance, persistence length, radial distribution functions, coordination numbers, and diffusion coefficients. They turn out to be more rigid than in other computational studies and we find diffusion coefficients in fair agreement with experimental data. The developed atomistic FF proves adequate for the realistic modeling of the size and protonation behavior of linear PEI, either as individual chains or composing polyplexes. © 2017 Wiley Periodicals, Inc
Beschreibung:Date Revised 20.11.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1096-987X
DOI:10.1002/jcc.24890