Humidity-Responsive Single-Nanoparticle-Layer Plasmonic Films
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 29(2017), 35 vom: 01. Sept. |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2017
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article DNA chromogenic films gold nanoparticles plasmon coupling single nanoparticle layers |
Zusammenfassung: | © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2D materials possess many interesting properties, and have shown great application potentials. In this work, the development of humidity-responsive, 2D plasmonic nanostructures with switchable chromogenic properties upon wetting-dewetting transitions is reported. By exploiting DNA hybridization-directed anchoring of gold nanoparticles (AuNPs) on substrates, a series of single-nanoparticle-layer (SNL) plasmonic films is fabricated. Due to the collective plasmonic responses in SNL, these ultrathin 2D films display rapid and reversible red-blue color change upon the wetting-dewetting transition, suggesting that hydration-induced microscopic plasmonic coupling between AuNPs is replicated in the macroscopic, centimeter-scale films. It is also found that hydration finely tunes the electric field distribution between AuNPs in the SNL film, based on which responsive surface-enhanced Raman scattering substrates with spatially homogeneous hot spots are developed. Thus it is expected that DNA-mediated 2D SNL structures open new avenues for designing miniaturized plasmonic nanodevices with various applications |
---|---|
Beschreibung: | Date Completed 18.07.2018 Date Revised 01.10.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201606796 |