|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM273832417 |
003 |
DE-627 |
005 |
20231225002122.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2017 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201702212
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0912.xml
|
035 |
|
|
|a (DE-627)NLM273832417
|
035 |
|
|
|a (NLM)28707413
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wang, Chenchen
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Bulk Bismuth as a High-Capacity and Ultralong Cycle-Life Anode for Sodium-Ion Batteries by Coupling with Glyme-Based Electrolytes
|
264 |
|
1 |
|c 2017
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 18.07.2018
|
500 |
|
|
|a Date Revised 01.10.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Sodium-ion batteries (SIBs) have attracted great interest for large-scale electric energy storage in recent years. However, anodes with long cycle life and large reversible capacities are still lacking and therefore limiting the development of SIBs. Here, a bulk Bi anode with surprisingly high Na storage performance in combination with glyme-based electrolytes is reported. This study shows that the bulk Bi electrode is gradually developed into a porous integrity during initial cycling, which is totally different from that in carbonate-based electrolytes and ensures facile Na+ transport and structural stability. The achievable capacity of bulk Bi in the NaPF6 -diglyme electrolyte is high up to 400 mAh g-1 , and the capacity retention is 94.4% after 2000 cycles, corresponding to a capacity loss of 0.0028% per cycle. It exhibits two flat discharge/charge plateaus at 0.67/0.77 and 0.46/0.64 V, ascribed to the typical two-phase reactions of Bi ↔ NaBi and NaBi ↔ Na3 Bi, respectively. The excellent performance is attributed to the unique porous integrity, stable solid electrolyte interface, and good electrode wettability of glymes. This interplay between electrolyte and electrode to boost Na storage performance will pave a new pathway for high-performance SIBs
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Bi
|
650 |
|
4 |
|a anodes
|
650 |
|
4 |
|a cycle life
|
650 |
|
4 |
|a glyme-based electrolytes
|
650 |
|
4 |
|a sodium-ion batteries
|
700 |
1 |
|
|a Wang, Liubin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Fujun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cheng, Fangyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Jun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 29(2017), 35 vom: 02. Sept.
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:29
|g year:2017
|g number:35
|g day:02
|g month:09
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201702212
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 29
|j 2017
|e 35
|b 02
|c 09
|