Bulk Bismuth as a High-Capacity and Ultralong Cycle-Life Anode for Sodium-Ion Batteries by Coupling with Glyme-Based Electrolytes
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 29(2017), 35 vom: 02. Sept. |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2017
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article Bi anodes cycle life glyme-based electrolytes sodium-ion batteries |
Zusammenfassung: | © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Sodium-ion batteries (SIBs) have attracted great interest for large-scale electric energy storage in recent years. However, anodes with long cycle life and large reversible capacities are still lacking and therefore limiting the development of SIBs. Here, a bulk Bi anode with surprisingly high Na storage performance in combination with glyme-based electrolytes is reported. This study shows that the bulk Bi electrode is gradually developed into a porous integrity during initial cycling, which is totally different from that in carbonate-based electrolytes and ensures facile Na+ transport and structural stability. The achievable capacity of bulk Bi in the NaPF6 -diglyme electrolyte is high up to 400 mAh g-1 , and the capacity retention is 94.4% after 2000 cycles, corresponding to a capacity loss of 0.0028% per cycle. It exhibits two flat discharge/charge plateaus at 0.67/0.77 and 0.46/0.64 V, ascribed to the typical two-phase reactions of Bi ↔ NaBi and NaBi ↔ Na3 Bi, respectively. The excellent performance is attributed to the unique porous integrity, stable solid electrolyte interface, and good electrode wettability of glymes. This interplay between electrolyte and electrode to boost Na storage performance will pave a new pathway for high-performance SIBs |
---|---|
Beschreibung: | Date Completed 18.07.2018 Date Revised 01.10.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201702212 |