Solution Combustion Synthesis : Low-Temperature Processing for p-Type Cu:NiO Thin Films for Transparent Electronics

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 29(2017), 34 vom: 10. Sept.
Auteur principal: Liu, Ao (Auteur)
Autres auteurs: Zhu, Huihui, Guo, Zidong, Meng, You, Liu, Guoxia, Fortunato, Elvira, Martins, Rodrigo, Shan, Fukai
Format: Article en ligne
Langue:English
Publié: 2017
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article low-temperature processing low-voltage operation p-type oxide semiconductor solution combustion synthesis thin-film transistor
Description
Résumé:© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Low-temperature solution processing opens a new window for the fabrication of oxide semiconductors due to its simple, low cost, and large-area uniformity. Herein, by using solution combustion synthesis (SCS), p-type Cu-doped NiO (Cu:NiO) thin films are fabricated at a temperature lower than 150 °C. The light doping of Cu substitutes the Ni site and disperses the valence band of the NiO matrix, leading to an enhanced p-type conductivity. Their integration into thin-film transistors (TFTs) demonstrates typical p-type semiconducting behavior. The optimized Cu5% NiO TFT exhibits outstanding electrical performance with a hole mobility of 1.5 cm2 V-1 s-1 , a large on/off current ratio of ≈104 , and clear switching characteristics under dynamic measurements. The employment of a high-k ZrO2 gate dielectric enables a low operating voltage (≤2 V) of the TFTs, which is critical for portable and battery-driven devices. The construction of a light-emitting-diode driving circuit demonstrates the high current control capability of the resultant TFTs. The achievement of the low-temperature-processed Cu:NiO thin films via SCS not only provides a feasible approach for low-cost flexible p-type oxide electronics but also represents a significant step toward the development of complementary metal-oxide semiconductor circuits
Description:Date Completed 18.07.2018
Date Revised 01.10.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201701599