Low-Rank and Joint Sparse Representations for Multi-Modal Recognition

We propose multi-task and multivariate methods for multi-modal recognition based on low-rank and joint sparse representations. Our formulations can be viewed as generalized versions of multivariate low-rank and sparse regression, where sparse and low-rank representations across all modalities are im...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 10 vom: 06. Okt., Seite 4741-4752
1. Verfasser: Zhang, Heng (VerfasserIn)
Weitere Verfasser: Patel, Vishal M, Chellappa, Rama
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM273587919
003 DE-627
005 20250221223127.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2721838  |2 doi 
028 5 2 |a pubmed25n0911.xml 
035 |a (DE-627)NLM273587919 
035 |a (NLM)28682252 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Heng  |e verfasserin  |4 aut 
245 1 0 |a Low-Rank and Joint Sparse Representations for Multi-Modal Recognition 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose multi-task and multivariate methods for multi-modal recognition based on low-rank and joint sparse representations. Our formulations can be viewed as generalized versions of multivariate low-rank and sparse regression, where sparse and low-rank representations across all modalities are imposed. One of our methods simultaneously couples information within different modalities by enforcing the common low-rank and joint sparse constraints among multi-modal observations. We also modify our formulations by including an occlusion term that is assumed to be sparse. The alternating direction method of multipliers is proposed to efficiently solve the resulting optimization problems. Extensive experiments on three publicly available multi-modal biometrics and object recognition data sets show that our methods compare favorably with other feature-level fusion methods 
650 4 |a Journal Article 
700 1 |a Patel, Vishal M  |e verfasserin  |4 aut 
700 1 |a Chellappa, Rama  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 10 vom: 06. Okt., Seite 4741-4752  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:10  |g day:06  |g month:10  |g pages:4741-4752 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2721838  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 10  |b 06  |c 10  |h 4741-4752