Low-Rank and Joint Sparse Representations for Multi-Modal Recognition

We propose multi-task and multivariate methods for multi-modal recognition based on low-rank and joint sparse representations. Our formulations can be viewed as generalized versions of multivariate low-rank and sparse regression, where sparse and low-rank representations across all modalities are im...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 10 vom: 06. Okt., Seite 4741-4752
1. Verfasser: Zhang, Heng (VerfasserIn)
Weitere Verfasser: Patel, Vishal M, Chellappa, Rama
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We propose multi-task and multivariate methods for multi-modal recognition based on low-rank and joint sparse representations. Our formulations can be viewed as generalized versions of multivariate low-rank and sparse regression, where sparse and low-rank representations across all modalities are imposed. One of our methods simultaneously couples information within different modalities by enforcing the common low-rank and joint sparse constraints among multi-modal observations. We also modify our formulations by including an occlusion term that is assumed to be sparse. The alternating direction method of multipliers is proposed to efficiently solve the resulting optimization problems. Extensive experiments on three publicly available multi-modal biometrics and object recognition data sets show that our methods compare favorably with other feature-level fusion methods
Beschreibung:Date Completed 30.07.2018
Date Revised 30.07.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2017.2721838