Salt-Induced Regenerative Surface for Bacteria Killing and Release

Antibacterial surfaces with both bacteria killing and release functions show great promise in biological and biomedical applications, in particular for reusable medical devices. However, these surfaces either require a sophisticated technique to create delicate structures or need rigorous stimuli to...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 33(2017), 28 vom: 18. Juli, Seite 7160-7168
1. Verfasser: Wu, Bozhen (VerfasserIn)
Weitere Verfasser: Zhang, Lixun, Huang, Lei, Xiao, Shengwei, Yang, Yin, Zhong, Mingqiang, Yang, Jintao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Anti-Bacterial Agents Polymers Sodium Chloride 451W47IQ8X Triclosan 4NM5039Y5X
Beschreibung
Zusammenfassung:Antibacterial surfaces with both bacteria killing and release functions show great promise in biological and biomedical applications, in particular for reusable medical devices. However, these surfaces either require a sophisticated technique to create delicate structures or need rigorous stimuli to trigger the functions, greatly limiting their practical application. In this study, we made a step forward by developing a simple system based on a salt-responsive polyzwitterionic brush. Specifically, the salt-responsive brush of poly(3-(dimethyl (4-vinylbenzyl) ammonium) propyl sulfonate) (polyDVBAPS) was endowed with bactericidal function by grafting an effective bactericide, i.e., triclosan (TCS). This simple functionalization successfully integrated the bacteria attach/release function of polyDVBAPS and bactericidal function of TCS. As a result, the surface could kill more than 95% attached bacteria and, subsequently, could rapidly detach ∼97% bacteria after gently shaking in 1.0 M NaCl for 10 min. More importantly, such high killing efficiency and release rate could be well retained (unchanged effectiveness of both killing and release after four severe killing/release cycles), indicating the highly efficient regeneration and long-term reusability of this system. This study not only contributes zwitterionic polymers by conferring new functions but also provides a new, highly efficient and reliable surface for "killing-release" antibacterial strategy
Beschreibung:Date Completed 23.01.2019
Date Revised 23.01.2019
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.7b01333