Polydopamine Coating To Stabilize a Free-Standing Lipid Bilayer for Channel Sensing
An appropriate method to study the function of membrane channels is to insert them into free-standing lipid bilayers and to record the ion conductance across the membrane. The insulating property of a free-standing lipid bilayer versus the single-channel conductivity provides sufficient sensitivity...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 33(2017), 29 vom: 25. Juli, Seite 7256-7262 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2017
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Indoles Ion Channels Lipid Bilayers Polymers polydopamine |
Zusammenfassung: | An appropriate method to study the function of membrane channels is to insert them into free-standing lipid bilayers and to record the ion conductance across the membrane. The insulating property of a free-standing lipid bilayer versus the single-channel conductivity provides sufficient sensitivity to detect minor changes in the pathway of ions along the channel. A potential application is to use membrane channels as label-free sensors for molecules, with DNA sequencing as its most prominent application. However, the inherent instability of free-standing bilayers limits broader use as a biosensor. Here we report on a possible stabilization of free-standing lipid bilayers using polydopamine deposition from dopamine-containing solutions in the presence of an oxidant. This stabilization treatment can be initiated after protein reconstitution and is compatible with most reconstitution protocols |
---|---|
Beschreibung: | Date Completed 16.01.2019 Date Revised 16.01.2019 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.7b01959 |