Discriminative Deep Metric Learning for Face and Kinship Verification

This paper presents a new discriminative deep metric learning (DDML) method for face and kinship verification in wild conditions. While metric learning has achieved reasonably good performance in face and kinship verification, most existing metric learning methods aim to learn a single Mahalanobis d...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 9 vom: 01. Sept., Seite 4269-4282
Auteur principal: Lu, Jiwen (Auteur)
Autres auteurs: Hu, Junlin, Tan, Yap-Peng
Format: Article en ligne
Langue:English
Publié: 2017
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM273226444
003 DE-627
005 20250221205952.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2717505  |2 doi 
028 5 2 |a pubmed25n0910.xml 
035 |a (DE-627)NLM273226444 
035 |a (NLM)28644806 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lu, Jiwen  |e verfasserin  |4 aut 
245 1 0 |a Discriminative Deep Metric Learning for Face and Kinship Verification 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 26.11.2018 
500 |a Date Revised 10.12.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a This paper presents a new discriminative deep metric learning (DDML) method for face and kinship verification in wild conditions. While metric learning has achieved reasonably good performance in face and kinship verification, most existing metric learning methods aim to learn a single Mahalanobis distance metric to maximize the inter-class variations and minimize the intra-class variations, which cannot capture the nonlinear manifold where face images usually lie on. To address this, we propose a DDML method to train a deep neural network to learn a set of hierarchical nonlinear transformations to project face pairs into the same latent feature space, under which the distance of each positive pair is reduced and that of each negative pair is enlarged. To better use the commonality of multiple feature descriptors to make all the features more robust for face and kinship verification, we develop a discriminative deep multi-metric learning method to jointly learn multiple neural networks, under which the correlation of different features of each sample is maximized, and the distance of each positive pair is reduced and that of each negative pair is enlarged. Extensive experimental results show that our proposed methods achieve the acceptable results in both face and kinship verification 
650 4 |a Journal Article 
700 1 |a Hu, Junlin  |e verfasserin  |4 aut 
700 1 |a Tan, Yap-Peng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 9 vom: 01. Sept., Seite 4269-4282  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:26  |g year:2017  |g number:9  |g day:01  |g month:09  |g pages:4269-4282 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2717505  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 9  |b 01  |c 09  |h 4269-4282