Rewriting Electron-Transfer Kinetics at Pyrolytic Carbon Electrodes Decorated with Nanometric Ruthenium Oxide
Platinum is state-of-the-art for fast electron transfer whereas carbon electrodes, which have semimetal electronic character, typically exhibit slow electron-transfer kinetics. But when we turn to practical electrochemical devices, we turn to carbon. To move energy devices and electro(bio)analytical...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 33(2017), 37 vom: 19. Sept., Seite 9416-9425 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2017
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, U.S. Gov't, Non-P.H.S. |
Zusammenfassung: | Platinum is state-of-the-art for fast electron transfer whereas carbon electrodes, which have semimetal electronic character, typically exhibit slow electron-transfer kinetics. But when we turn to practical electrochemical devices, we turn to carbon. To move energy devices and electro(bio)analytical measurements to a new performance curve requires improved electron-transfer rates at carbon. We approach this challenge with electroless deposition of disordered, nanoscopic anhydrous ruthenium oxide at pyrolytic carbon prepared by thermal decomposition of benzene (RuOxCVD-C). We assessed traditionally fast, chloride-assisted ([Fe(CN)6]3-/4-) and notoriously slow ([Fe(H2O)6]3+/2+) electron-transfer redox probes at CVD-C and RuOx@CVD-C electrodes and calculated standard heterogeneous rate constants as a function of heat treatment to crystallize the disordered RuOx domains to their rutile form. For the fast electron-transfer probe, [Fe(CN)6]3-/4-, the rate increases by 34× over CVD-C once the RuOx is calcined to form crystalline rutile RuO2. For the classically outer-sphere [Fe(H2O)6]3+/2+, electron-transfer rates increase by an even greater degree over CVD-C (55×). The standard heterogeneous rate constant for each probe approaches that observed at Pt but does so using only minimal loadings of RuOx |
---|---|
Beschreibung: | Date Completed 23.07.2018 Date Revised 23.07.2018 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.7b01107 |