Hydrogel Patches on Live Cells through Surface-Mediated Polymerization

Many naturally occurring cells possess an intrinsic ability to cross biological barriers that block conventional drug delivery, and these cells offer a possible mode of active transport across the blood-brain barrier or into the core of tumor masses. While many technologies for the formation of comp...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 33(2017), 27 vom: 11. Juli, Seite 6778-6784
1. Verfasser: Wu, Pei-Jung (VerfasserIn)
Weitere Verfasser: Lilly, Jacob L, Arreaza, Roberto, Berron, Brad J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S. Hydrogels Serum Albumin, Bovine 27432CM55Q Polyethylene Glycols 3WJQ0SDW1A
Beschreibung
Zusammenfassung:Many naturally occurring cells possess an intrinsic ability to cross biological barriers that block conventional drug delivery, and these cells offer a possible mode of active transport across the blood-brain barrier or into the core of tumor masses. While many technologies for the formation of complete, nanoparticle-loaded coatings on cells exist, a complete coating on the cell surface would disrupt the interaction of cells with their environments. To address this issue, cell surface patches that partially cover cell surfaces might provide a superior approach for cell-mediated therapeutic delivery. The goal of this study is to establish a simplified approach to producing polymeric patches of arbitrary shapes on a live cell via surface-mediated photopolymerization. Cell surfaces were nonspecifically labeled with eosin, and polyethylene (glycol) diacrylate (PEGDA) coatings were directed to specific sites using 530 nm irradiation through a chrome-coated photomask. These coatings may entrap drug-loaded or imaging particles. The extent of nonspecific formation of PEGDA hydrogel coatings increased with irradiation time, light intensity, and initiating species; 40 mW/cm2 irradiation for 5 min delivered high-resolution patterns on the surface of A549 cells, and these cells remained viable for 48 h postpatterning with fluorescent nanoparticle-loaded coatings. This work first demonstrated the feasibility of photopatterning polymer patches directly on the surface of cells
Beschreibung:Date Completed 22.01.2019
Date Revised 22.01.2019
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.7b01139