Homogeneous 2D MoTe2 p-n Junctions and CMOS Inverters formed by Atomic-Layer-Deposition-Induced Doping

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 29(2017), 30 vom: 15. Aug.
1. Verfasser: Lim, June Yeong (VerfasserIn)
Weitere Verfasser: Pezeshki, Atiye, Oh, Sehoon, Kim, Jin Sung, Lee, Young Tack, Yu, Sanghyuck, Hwang, Do Kyung, Lee, Gwan-Hyoung, Choi, Hyoung Joon, Im, Seongil
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 2D semiconductors atomic-layer-deposition-induced doping homogeneous complementary inverters p-n junction diodes α-MoTe2
Beschreibung
Zusammenfassung:© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recently, α-MoTe2 , a 2D transition-metal dichalcogenide (TMD), has shown outstanding properties, aiming at future electronic devices. Such TMD structures without surface dangling bonds make the 2D α-MoTe2 a more favorable candidate than conventional 3D Si on the scale of a few nanometers. The bandgap of thin α-MoTe2 appears close to that of Si and is quite smaller than those of other typical TMD semiconductors. Even though there have been a few attempts to control the charge-carrier polarity of MoTe2 , functional devices such as p-n junction or complementary metal-oxide-semiconductor (CMOS) inverters have not been reported. Here, we demonstrate a 2D CMOS inverter and p-n junction diode in a single α-MoTe2 nanosheet by a straightforward selective doping technique. In a single α-MoTe2 flake, an initially p-doped channel is selectively converted to an n-doped region with high electron mobility of 18 cm2 V-1 s-1 by atomic-layer-deposition-induced H-doping. The ultrathin CMOS inverter exhibits a high DC voltage gain of 29, an AC gain of 18 at 1 kHz, and a low static power consumption of a few nanowatts. The results show a great potential of α-MoTe2 for future electronic devices based on 2D semiconducting materials
Beschreibung:Date Completed 19.10.2018
Date Revised 30.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201701798