Microstructure of β-Sitosterol:γ-Oryzanol Edible Organogels

Rheology and atomic force microscopy (AFM) were employed to examine the microstructure of β-sitosterol:γ-oryzanol organogels in sunflower oil. Using time-resolved rheology, we followed gel formation, paying specific attention to the fibril aggregation process, which had not been studied in detail pr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 33(2017), 18 vom: 09. Mai, Seite 4537-4542
1. Verfasser: Matheson, Andrew B (VerfasserIn)
Weitere Verfasser: Koutsos, Vasileios, Dalkas, Georgios, Euston, Stephen, Clegg, Paul
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Gels Phenylpropionates Sitosterols gamma-sitosterol 5LI01C78DD gamma-oryzanol SST9XCL51M
Beschreibung
Zusammenfassung:Rheology and atomic force microscopy (AFM) were employed to examine the microstructure of β-sitosterol:γ-oryzanol organogels in sunflower oil. Using time-resolved rheology, we followed gel formation, paying specific attention to the fibril aggregation process, which had not been studied in detail previously for this system. Using AFM, we observed gel structures directly and obtained detailed information on the gel structure, far exceeding previous studies. Our analysis suggests that though gels are formed by the self-assembly and aggregation of one-dimensional fibrils, the manner in which these fibrils aggregate into ribbons results in complex structures of higher dimensionality. We emphasize that it is a surprise to find ribbons and not twisted strands. Comparing AFM images of 10% w/w and 20% w/w gelator systems, we observed differences in the degree of branching which are consistent with the rheology. We also observed the individual self-assembled fibrils which make up these gels with much greater clarity than in previous microscopy studies, and the fibril diameters of ∼9.8 nm we measured agree excellently with those obtained from existing small-angle neutron scattering data. These results provide new insight into the structure and formation kinetics of this important organogel system
Beschreibung:Date Completed 25.01.2019
Date Revised 25.01.2019
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.7b00040