Structured Sparse Subspace Clustering : A Joint Affinity Learning and Subspace Clustering Framework

Subspace clustering refers to the problem of segmenting data drawn from a union of subspaces. State-of-the-art approaches for solving this problem follow a two-stage approach. In the first step, an affinity matrix is learned from the data using sparse or low-rank minimization techniques. In the seco...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 6 vom: 13. Juni, Seite 2988-3001
1. Verfasser: Chun-Guang Li (VerfasserIn)
Weitere Verfasser: Chong You, Vidal, Rene
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM270972978
003 DE-627
005 20231224231716.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2691557  |2 doi 
028 5 2 |a pubmed24n0903.xml 
035 |a (DE-627)NLM270972978 
035 |a (NLM)28410106 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chun-Guang Li  |e verfasserin  |4 aut 
245 1 0 |a Structured Sparse Subspace Clustering  |b A Joint Affinity Learning and Subspace Clustering Framework 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.03.2019 
500 |a Date Revised 08.03.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Subspace clustering refers to the problem of segmenting data drawn from a union of subspaces. State-of-the-art approaches for solving this problem follow a two-stage approach. In the first step, an affinity matrix is learned from the data using sparse or low-rank minimization techniques. In the second step, the segmentation is found by applying spectral clustering to this affinity. While this approach has led to the state-of-the-art results in many applications, it is suboptimal, because it does not exploit the fact that the affinity and the segmentation depend on each other. In this paper, we propose a joint optimization framework - Structured Sparse Subspace Clustering (S3C) - for learning both the affinity and the segmentation. The proposed S3C framework is based on expressing each data point as a structured sparse linear combination of all other data points, where the structure is induced by a norm that depends on the unknown segmentation. Moreover, we extend the proposed S3C framework into Constrained S3C (CS3C) in which available partial side-information is incorporated into the stage of learning the affinity. We show that both the structured sparse representation and the segmentation can be found via a combination of an alternating direction method of multipliers with spectral clustering. Experiments on a synthetic data set, the Extended Yale B face data set, the Hopkins 155 motion segmentation database, and three cancer data sets demonstrate the effectiveness of our approach 
650 4 |a Journal Article 
700 1 |a Chong You  |e verfasserin  |4 aut 
700 1 |a Vidal, Rene  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 6 vom: 13. Juni, Seite 2988-3001  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:6  |g day:13  |g month:06  |g pages:2988-3001 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2691557  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 6  |b 13  |c 06  |h 2988-3001