Structured Sparse Subspace Clustering : A Joint Affinity Learning and Subspace Clustering Framework
Subspace clustering refers to the problem of segmenting data drawn from a union of subspaces. State-of-the-art approaches for solving this problem follow a two-stage approach. In the first step, an affinity matrix is learned from the data using sparse or low-rank minimization techniques. In the seco...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 6 vom: 13. Juni, Seite 2988-3001 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2017
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Zusammenfassung: | Subspace clustering refers to the problem of segmenting data drawn from a union of subspaces. State-of-the-art approaches for solving this problem follow a two-stage approach. In the first step, an affinity matrix is learned from the data using sparse or low-rank minimization techniques. In the second step, the segmentation is found by applying spectral clustering to this affinity. While this approach has led to the state-of-the-art results in many applications, it is suboptimal, because it does not exploit the fact that the affinity and the segmentation depend on each other. In this paper, we propose a joint optimization framework - Structured Sparse Subspace Clustering (S3C) - for learning both the affinity and the segmentation. The proposed S3C framework is based on expressing each data point as a structured sparse linear combination of all other data points, where the structure is induced by a norm that depends on the unknown segmentation. Moreover, we extend the proposed S3C framework into Constrained S3C (CS3C) in which available partial side-information is incorporated into the stage of learning the affinity. We show that both the structured sparse representation and the segmentation can be found via a combination of an alternating direction method of multipliers with spectral clustering. Experiments on a synthetic data set, the Extended Yale B face data set, the Hopkins 155 motion segmentation database, and three cancer data sets demonstrate the effectiveness of our approach |
---|---|
Beschreibung: | Date Completed 08.03.2019 Date Revised 08.03.2019 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2017.2691557 |