Preparation of peptide-MHC and T-cell receptor dextramers by biotinylated dextran doping

Peptide-major histocompatibility complex (pMHC) multimers enable the detection, characterization, and isolation of antigen-specific T-cell subsets at the single-cell level via flow cytometry and fluorescence microscopy. These labeling reagents exploit a multivalent scaffold to increase the avidity o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:BioTechniques. - 1991. - 62(2017), 3 vom: 01. März, Seite 123-130
1. Verfasser: Bethune, Michael T (VerfasserIn)
Weitere Verfasser: Comin-Anduix, Begoña, Hwang Fu, Yu-Hsien, Ribas, Antoni, Baltimore, David
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:BioTechniques
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't T-cell receptor (TCR) biotinylated dextran cancer immunotherapy dextramer immunology ligand discovery major histocompatibility complex (MHC) mehr... multimer pMHC peptide peptide-specific MHC clustering tetramer tumor antigen discovery Dextrans Fluorescent Dyes Histocompatibility Antigens Peptides Receptors, Antigen, T-Cell Recombinant Fusion Proteins Biotin 6SO6U10H04 Streptavidin 9013-20-1
LEADER 01000caa a22002652c 4500
001 NLM26988212X
003 DE-627
005 20250221085616.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.2144/000114525  |2 doi 
028 5 2 |a pubmed25n0899.xml 
035 |a (DE-627)NLM26988212X 
035 |a (NLM)28298179 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bethune, Michael T  |e verfasserin  |4 aut 
245 1 0 |a Preparation of peptide-MHC and T-cell receptor dextramers by biotinylated dextran doping 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.10.2017 
500 |a Date Revised 06.03.2018 
500 |a published: Electronic 
500 |a Citation Status MEDLINE 
520 |a Peptide-major histocompatibility complex (pMHC) multimers enable the detection, characterization, and isolation of antigen-specific T-cell subsets at the single-cell level via flow cytometry and fluorescence microscopy. These labeling reagents exploit a multivalent scaffold to increase the avidity of individually weak T-cell receptor (TCR)-pMHC interactions. Dextramers are an improvement over the original streptavidin-based tetramer technology because they are more multivalent, improving sensitivity for rare, low-avidity T cells, including self/tumor-reactive clones. However, commercial pMHC dextramers are expensive, and in-house production is very involved for a typical biology research laboratory. Here, we present a simple, inexpensive protocol for preparing pMHC dextramers by doping in biotinylated dextran during conventional tetramer preparation. We use these pMHC dextramers to identify patient-derived, tumor-reactive T cells. We apply the same dextran doping technique to prepare TCR dextramers and use these novel reagents to yield new insight into MHC I-mediated antigen presentation 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a T-cell receptor (TCR) 
650 4 |a biotinylated dextran 
650 4 |a cancer immunotherapy 
650 4 |a dextramer 
650 4 |a immunology 
650 4 |a ligand discovery 
650 4 |a major histocompatibility complex (MHC) 
650 4 |a multimer 
650 4 |a pMHC 
650 4 |a peptide 
650 4 |a peptide-specific MHC clustering 
650 4 |a tetramer 
650 4 |a tumor antigen discovery 
650 7 |a Dextrans  |2 NLM 
650 7 |a Fluorescent Dyes  |2 NLM 
650 7 |a Histocompatibility Antigens  |2 NLM 
650 7 |a Peptides  |2 NLM 
650 7 |a Receptors, Antigen, T-Cell  |2 NLM 
650 7 |a Recombinant Fusion Proteins  |2 NLM 
650 7 |a Biotin  |2 NLM 
650 7 |a 6SO6U10H04  |2 NLM 
650 7 |a Streptavidin  |2 NLM 
650 7 |a 9013-20-1  |2 NLM 
700 1 |a Comin-Anduix, Begoña  |e verfasserin  |4 aut 
700 1 |a Hwang Fu, Yu-Hsien  |e verfasserin  |4 aut 
700 1 |a Ribas, Antoni  |e verfasserin  |4 aut 
700 1 |a Baltimore, David  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t BioTechniques  |d 1991  |g 62(2017), 3 vom: 01. März, Seite 123-130  |w (DE-627)NLM012627046  |x 1940-9818  |7 nnas 
773 1 8 |g volume:62  |g year:2017  |g number:3  |g day:01  |g month:03  |g pages:123-130 
856 4 0 |u http://dx.doi.org/10.2144/000114525  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_21 
912 |a GBV_ILN_22 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_50 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_65 
912 |a GBV_ILN_70 
912 |a GBV_ILN_99 
912 |a GBV_ILN_121 
912 |a GBV_ILN_130 
912 |a GBV_ILN_227 
912 |a GBV_ILN_350 
912 |a GBV_ILN_618 
912 |a GBV_ILN_640 
912 |a GBV_ILN_754 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2002 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2012 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2023 
912 |a GBV_ILN_2035 
912 |a GBV_ILN_2040 
912 |a GBV_ILN_2060 
912 |a GBV_ILN_2099 
912 |a GBV_ILN_2105 
912 |a GBV_ILN_2121 
912 |a GBV_ILN_2470 
951 |a AR 
952 |d 62  |j 2017  |e 3  |b 01  |c 03  |h 123-130