Enhanced Performance of Blended Polymer Excipients in Delivering a Hydrophobic Drug through the Synergistic Action of Micelles and HPMCAS

Blends of hydroxypropyl methylcellulose acetate succinate (HPMCAS) and dodecyl (C12)-tailed poly(N-isopropylacrylamide) (PNIPAm) were systematically explored as a model system to dispense the active ingredient phenytoin by rapid dissolution, followed by the suppression of drug crystallization for an...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 33(2017), 11 vom: 21. März, Seite 2837-2848
1. Verfasser: Li, Ziang (VerfasserIn)
Weitere Verfasser: Johnson, Lindsay M, Ricarte, Ralm G, Yao, Letitia J, Hillmyer, Marc A, Bates, Frank S, Lodge, Timothy P
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Acrylamides Acrylic Resins Excipients Micelles Polymers poly-N-isopropylacrylamide 25189-55-3 mehr... Phenytoin 6158TKW0C5 hydroxypropylmethylcellulose acetate succinate 71138-97-1 Methylcellulose 9004-67-5 N-isopropylacrylamide B7GFF17L9U
Beschreibung
Zusammenfassung:Blends of hydroxypropyl methylcellulose acetate succinate (HPMCAS) and dodecyl (C12)-tailed poly(N-isopropylacrylamide) (PNIPAm) were systematically explored as a model system to dispense the active ingredient phenytoin by rapid dissolution, followed by the suppression of drug crystallization for an extended period. Dynamic and static light scattering revealed that C12-PNIPAm polymers, synthesized by reversible addition-fragmentation chain-transfer polymerization, self-assembled into micelles with dodecyl cores in phosphate-buffered saline (PBS, pH 6.5). A synergistic effect on drug supersaturation was documented during in vitro dissolution tests by varying the blending ratio, with HPMACS primarily aiding in rapid dissolution and PNIPAm maintaining supersaturation. Polarized light and cryogenic transmission electron microscopy experiments revealed that C12-PNIPAm micelles maintain drug supersaturation by inhibiting both crystal nucleation and growth. Cross-peaks between the phenyl group of phenytoin and the isopropyl group of C12-PNIPAm in 2D 1H nuclear Overhauser effect (NOESY) spectra confirmed the existence of drug-polymer intermolecular interactions in solution. Phenytoin and polymer diffusion coefficients, measured by diffusion-ordered NMR spectroscopy (DOSY), demonstrated that the drug-polymer association constant increased with increasing local density of the corona chains, coincident with a reduction in C12-PNIPAm molecular weight. These findings demonstrate a new strategy for exploiting the versatility of polymer blends through the use of self-assembled micelles in the design of advanced excipients
Beschreibung:Date Completed 24.09.2018
Date Revised 24.09.2018
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.7b00325