|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM269482296 |
003 |
DE-627 |
005 |
20250221074629.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2017 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201606748
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0898.xml
|
035 |
|
|
|a (DE-627)NLM269482296
|
035 |
|
|
|a (NLM)28256757
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Koplovitz, Guy
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Magnetic Nanoplatelet-Based Spin Memory Device Operating at Ambient Temperatures
|
264 |
|
1 |
|c 2017
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 18.07.2018
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a There is an increasing demand for realizing a simple Si based universal memory device working at ambient temperatures. In principle, nonvolatile magnetic memory can operate at low power consumption and high frequencies. However, in order to compete with existing memory technology, size reduction and simplification of the used material systems are essential. In this work, the chiral-induced spin selectivity effect is used along with 30-50 nm ferromagnetic nanoplatelets in order to realize a simple magnetic memory device. The vertical memory is Si compatible, easy to fabricate, and in principle can be scaled down to a single nanoparticle size. Results show clear dual magnetization behavior with threefold enhancement between the one and zero states. The magnetization of the device is accompanied with large avalanche like noise that is ascribed to the redistribution of current densities due to spin accumulation inducing coupling effects between the different nanoplatelets
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a magnetic memory
|
650 |
|
4 |
|a magnetic nanoparticles
|
650 |
|
4 |
|a molecular electronics
|
650 |
|
4 |
|a self-assembled monolayers
|
650 |
|
4 |
|a spintronics
|
700 |
1 |
|
|a Primc, Darinka
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ben Dor, Oren
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yochelis, Shira
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Rotem, Dvir
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Porath, Danny
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Paltiel, Yossi
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 29(2017), 17 vom: 05. Mai
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:29
|g year:2017
|g number:17
|g day:05
|g month:05
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201606748
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 29
|j 2017
|e 17
|b 05
|c 05
|