Robust Nanoparticles Detection From Noisy Background by Fusing Complementary Image Information

This paper studies the problem of detecting the presence of nanoparticles in noisy transmission electron microscopic (TEM) images and then fitting each nanoparticle with an elliptic shape model. In order to achieve robustness while handling low contrast and high noise in the TEM images, we propose a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 12 vom: 15. Dez., Seite 5713-5726
1. Verfasser: Yanjun Qian (VerfasserIn)
Weitere Verfasser: Huang, Jianhua Z, Xiaodong Li, Yu Ding
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM268254451
003 DE-627
005 20231224222319.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2614127  |2 doi 
028 5 2 |a pubmed24n0894.xml 
035 |a (DE-627)NLM268254451 
035 |a (NLM)28114064 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yanjun Qian  |e verfasserin  |4 aut 
245 1 0 |a Robust Nanoparticles Detection From Noisy Background by Fusing Complementary Image Information 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper studies the problem of detecting the presence of nanoparticles in noisy transmission electron microscopic (TEM) images and then fitting each nanoparticle with an elliptic shape model. In order to achieve robustness while handling low contrast and high noise in the TEM images, we propose an approach to fuse two kinds of complementary image information, namely, the pixel intensity and the gradient (the first derivative in intensity). Our approach entails two main steps: 1) the first step is to, after necessary pre-processing, employ both intensity-based information and gradient-based information to process the same TEM image and produce two independent sets of results and 2) the subsequent step is to formulate a binary integer programming (BIP) problem for conflict resolution among the two sets of results. Solving the BIP problem determines the final nanoparticle identification. We apply our method to a set of TEM images taken under different microscopic resolutions and noise levels. The empirical results show the merit of the proposed method. It can process a TEM image of 1024×1024 pixels in a few minutes, and the processed outcomes appear rather robust 
650 4 |a Journal Article 
700 1 |a Huang, Jianhua Z  |e verfasserin  |4 aut 
700 1 |a Xiaodong Li  |e verfasserin  |4 aut 
700 1 |a Yu Ding  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 12 vom: 15. Dez., Seite 5713-5726  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:12  |g day:15  |g month:12  |g pages:5713-5726 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2614127  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 12  |b 15  |c 12  |h 5713-5726