Multi-Instance Classification by Max-Margin Training of Cardinality-Based Markov Networks

We propose a probabilistic graphical framework for multi-instance learning (MIL) based on Markov networks. This framework can deal with different levels of labeling ambiguity (i.e., the portion of positive instances in a bag) in weakly supervised data by parameterizing cardinality potential function...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 9 vom: 15. Sept., Seite 1839-1852
Auteur principal: Hajimirsadeghi, Hossein (Auteur)
Autres auteurs: Mori, Greg
Format: Article en ligne
Langue:English
Publié: 2017
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article