Multi-Instance Classification by Max-Margin Training of Cardinality-Based Markov Networks
We propose a probabilistic graphical framework for multi-instance learning (MIL) based on Markov networks. This framework can deal with different levels of labeling ambiguity (i.e., the portion of positive instances in a bag) in weakly supervised data by parameterizing cardinality potential function...
Publié dans: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 9 vom: 15. Sept., Seite 1839-1852 |
---|---|
Auteur principal: | |
Autres auteurs: | |
Format: | Article en ligne |
Langue: | English |
Publié: |
2017
|
Accès à la collection: | IEEE transactions on pattern analysis and machine intelligence |
Sujets: | Journal Article |
Accès en ligne |
Volltext |