Multi-Instance Classification by Max-Margin Training of Cardinality-Based Markov Networks

We propose a probabilistic graphical framework for multi-instance learning (MIL) based on Markov networks. This framework can deal with different levels of labeling ambiguity (i.e., the portion of positive instances in a bag) in weakly supervised data by parameterizing cardinality potential function...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 9 vom: 15. Sept., Seite 1839-1852
1. Verfasser: Hajimirsadeghi, Hossein (VerfasserIn)
Weitere Verfasser: Mori, Greg
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM268254400
003 DE-627
005 20231224222319.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2016.2613865  |2 doi 
028 5 2 |a pubmed24n0894.xml 
035 |a (DE-627)NLM268254400 
035 |a (NLM)28114057 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hajimirsadeghi, Hossein  |e verfasserin  |4 aut 
245 1 0 |a Multi-Instance Classification by Max-Margin Training of Cardinality-Based Markov Networks 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.11.2018 
500 |a Date Revised 15.11.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose a probabilistic graphical framework for multi-instance learning (MIL) based on Markov networks. This framework can deal with different levels of labeling ambiguity (i.e., the portion of positive instances in a bag) in weakly supervised data by parameterizing cardinality potential functions. Consequently, it can be used to encode different cardinality-based multi-instance assumptions, ranging from the standard MIL assumption to more general assumptions. In addition, this framework can be efficiently used for both binary and multiclass classification. To this end, an efficient inference algorithm and a discriminative latent max-margin learning algorithm are introduced to train and test the proposed multi-instance Markov network models. We evaluate the performance of the proposed framework on binary and multi-class MIL benchmark datasets as well as two challenging computer vision tasks: cyclist helmet recognition and human group activity recognition. Experimental results verify that encoding the degree of ambiguity in data can improve classification performance 
650 4 |a Journal Article 
700 1 |a Mori, Greg  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 39(2017), 9 vom: 15. Sept., Seite 1839-1852  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:39  |g year:2017  |g number:9  |g day:15  |g month:09  |g pages:1839-1852 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2016.2613865  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2017  |e 9  |b 15  |c 09  |h 1839-1852