Multi-Instance Classification by Max-Margin Training of Cardinality-Based Markov Networks
We propose a probabilistic graphical framework for multi-instance learning (MIL) based on Markov networks. This framework can deal with different levels of labeling ambiguity (i.e., the portion of positive instances in a bag) in weakly supervised data by parameterizing cardinality potential function...
| Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 9 vom: 15. Sept., Seite 1839-1852 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2017
|
| Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
| Schlagworte: | Journal Article |
| Online verfügbar |
Volltext |