Multi-Instance Classification by Max-Margin Training of Cardinality-Based Markov Networks

We propose a probabilistic graphical framework for multi-instance learning (MIL) based on Markov networks. This framework can deal with different levels of labeling ambiguity (i.e., the portion of positive instances in a bag) in weakly supervised data by parameterizing cardinality potential function...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 39(2017), 9 vom: 15. Sept., Seite 1839-1852
1. Verfasser: Hajimirsadeghi, Hossein (VerfasserIn)
Weitere Verfasser: Mori, Greg
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article