Influence of Fimbriae on Bacterial Adhesion and Viscoelasticity and Correlations of the Two Properties with Biofilm Formation

The surface polymers of bacteria determine the ability of bacteria to adhere to a substrate for colonization, which is an essential step for a variety of microbial processes, such as biofilm formation and biofouling. Capsular polysaccharides and fimbriae are two major components on a bacterial surfa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 33(2017), 1 vom: 10. Jan., Seite 100-106
1. Verfasser: Wang, Huabin (VerfasserIn)
Weitere Verfasser: Wilksch, Jonathan J, Chen, Ligang, Tan, Jason W H, Strugnell, Richard A, Gee, Michelle L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:The surface polymers of bacteria determine the ability of bacteria to adhere to a substrate for colonization, which is an essential step for a variety of microbial processes, such as biofilm formation and biofouling. Capsular polysaccharides and fimbriae are two major components on a bacterial surface, which are critical for mediating cell-surface interactions. Adhesion and viscoelasticity of bacteria are two major physical properties related to bacteria-surface interactions. In this study, we employed atomic force microscopy (AFM) to interrogate how the adhesion work and the viscoelasticity of a bacterial pathogen, Klebsiella pneumoniae, influence biofilm formation. To do this, the wild-type, type 3 fimbriae-deficient, and type 3 fimbriae-overexpressed K. pneumoniae strains have been investigated in an aqueous environment. The results show that the measured adhesion work is positively correlated to biofilm formation; however, the viscoelasticity is not correlated to biofilm formation. This study indicates that AFM-based adhesion measurements of bacteria can be used to evaluate the function of bacterial surface polymers in biofilm formation and to predict the ability of bacterial biofilm formation
Beschreibung:Date Completed 02.08.2017
Date Revised 02.08.2017
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.6b03764