|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM266780903 |
003 |
DE-627 |
005 |
20250220233901.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2016 xx |||||o 00| ||eng c |
028 |
5 |
2 |
|a pubmed25n0889.xml
|
035 |
|
|
|a (DE-627)NLM266780903
|
035 |
|
|
|a (NLM)27913332
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Tag, Andreas
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A Method for Accurate Modeling of BAW Filters at High Power Levels
|
264 |
|
1 |
|c 2016
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 30.06.2017
|
500 |
|
|
|a Date Revised 30.06.2017
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a A novel approach for multiphysics modeling of bulk acoustic wave (BAW) filters is presented allowing accurate and at the same time efficient modeling of BAW filters at high power levels. The approach takes the different types of losses and their spatial distribution into account in order to provide the required input for thermal simulation. The temperature distribution determined by thermal simulation is used to modify the geometry and the layer stack of each single resonator of the filter. In this way, the required input for modeling of electromagnetic (EM) and acoustic behavior at high power level is generated. The high accuracy of the modeling approach is verified by the measurements of the S-parameters and the temperature distribution by infrared thermography during high-power loads. Moreover, the influence of the nonlinear behavior on the frequency shift of the resonance frequency is investigated. For this purpose, a parameterized nonlinear Mason model has been combined with a 3-D EM finite-element method and the required nonlinear material parameters were determined by fitting simulation results to the measured polyharmonic distortion model (X-parameters) of a BAW resonator
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Chauhan, Vikrant
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huck, Christian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bader, Bernhard
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Karolewski, Dominik
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pitschi, F Maximilian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Weigel, Robert
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hagelauer, Amelie
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on ultrasonics, ferroelectrics, and frequency control
|d 1986
|g 63(2016), 12 vom: 03. Dez., Seite 2207-2214
|w (DE-627)NLM098181017
|x 1525-8955
|7 nnns
|
773 |
1 |
8 |
|g volume:63
|g year:2016
|g number:12
|g day:03
|g month:12
|g pages:2207-2214
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_24
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 63
|j 2016
|e 12
|b 03
|c 12
|h 2207-2214
|