A Method for Accurate Modeling of BAW Filters at High Power Levels

A novel approach for multiphysics modeling of bulk acoustic wave (BAW) filters is presented allowing accurate and at the same time efficient modeling of BAW filters at high power levels. The approach takes the different types of losses and their spatial distribution into account in order to provide...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 63(2016), 12 vom: 03. Dez., Seite 2207-2214
Auteur principal: Tag, Andreas (Auteur)
Autres auteurs: Chauhan, Vikrant, Huck, Christian, Bader, Bernhard, Karolewski, Dominik, Pitschi, F Maximilian, Weigel, Robert, Hagelauer, Amelie
Format: Article en ligne
Langue:English
Publié: 2016
Accès à la collection:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Sujets:Journal Article
Description
Résumé:A novel approach for multiphysics modeling of bulk acoustic wave (BAW) filters is presented allowing accurate and at the same time efficient modeling of BAW filters at high power levels. The approach takes the different types of losses and their spatial distribution into account in order to provide the required input for thermal simulation. The temperature distribution determined by thermal simulation is used to modify the geometry and the layer stack of each single resonator of the filter. In this way, the required input for modeling of electromagnetic (EM) and acoustic behavior at high power level is generated. The high accuracy of the modeling approach is verified by the measurements of the S-parameters and the temperature distribution by infrared thermography during high-power loads. Moreover, the influence of the nonlinear behavior on the frequency shift of the resonance frequency is investigated. For this purpose, a parameterized nonlinear Mason model has been combined with a 3-D EM finite-element method and the required nonlinear material parameters were determined by fitting simulation results to the measured polyharmonic distortion model (X-parameters) of a BAW resonator
Description:Date Completed 30.06.2017
Date Revised 30.06.2017
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1525-8955