|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM266176798 |
003 |
DE-627 |
005 |
20231227125502.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2016 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1016/j.plaphy.2016.10.028
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1223.xml
|
035 |
|
|
|a (DE-627)NLM266176798
|
035 |
|
|
|a (NLM)27842297
|
035 |
|
|
|a (PII)S0981-9428(16)30418-1
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Lim, Sun-Hyung
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a RNAi-mediated suppression of dihydroflavonol 4-reductase in tobacco allows fine-tuning of flower color and flux through the flavonoid biosynthetic pathway
|
264 |
|
1 |
|c 2016
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 10.04.2017
|
500 |
|
|
|a Date Revised 13.12.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Copyright © 2016 Elsevier Masson SAS. All rights reserved.
|
520 |
|
|
|a To examine flux regulation in the flavonoid pathway of tobacco flowers, we suppressed two genes for dihydroflavonol 4-reductase (NtDFR 1 and 2) by RNA interference (Ri)-mediated post transcriptional gene silencing in pink-flowered tobacco. Two phenotypes were observed, pale pink (DFR-Ri_PP)- and white (DFR-Ri_W)-flowered lines. The relative mRNA levels of NtDFR genes in DFR-Ri_PP and DFR-Ri_W lines were reduced by 79%-95% relative to non-transformed (NT) plants. DFR-Ri_W lines had five-fold higher levels of small interference RNAs compared to DFR-Ri_PP lines. Expression of eight structural genes in the flavonoid pathway was significantly increased in DFR-Ri_W lines but not in DFR-Ri_PP lines based on quantitative RT-PCR. Anthocyanin contents correlated with flower color, with a reduction of 72%-97% in DFR-Ri_PP and DFR-Ri_W lines. Decreases in anthocyanin in flower were proportional with reductions of proanthocyanidin content in seeds. Two pale pink lines, DFR-Ri_PP 17 and 20, with anthocyanin decreases and the lowest level of DFR gene silencing, had higher (dihydro) flavonol production than a white flowered line, DFR-Ri_W 67. This finding suggests that suppression of DFR can increase the total levels of flavonoids due to (dihydro) flavonol biosynthesis. Our observations that higher suppression of DFR had a greater influence on the expression of flavonoid biosynthetic genes demonstrates the key role of DFR in the pathway and allows selection among DFR-Ri lines for plants with specific gene expression profiles to fine-tune flux through the pathway
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Anthocyanin
|
650 |
|
4 |
|a DFR
|
650 |
|
4 |
|a FLS
|
650 |
|
4 |
|a Metabolic flux
|
650 |
|
4 |
|a Post transcriptional gene silencing
|
650 |
|
4 |
|a Proanthocyanidin
|
650 |
|
4 |
|a Tobacco
|
650 |
|
7 |
|a Flavonoids
|2 NLM
|
650 |
|
7 |
|a Plant Proteins
|2 NLM
|
650 |
|
7 |
|a RNA, Messenger
|2 NLM
|
650 |
|
7 |
|a RNA, Plant
|2 NLM
|
650 |
|
7 |
|a Alcohol Oxidoreductases
|2 NLM
|
650 |
|
7 |
|a EC 1.1.-
|2 NLM
|
650 |
|
7 |
|a dihydroflavanol 4-reductase
|2 NLM
|
650 |
|
7 |
|a EC 1.1.1.-
|2 NLM
|
700 |
1 |
|
|a You, Min-Kyung
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Da-Hye
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Jae Kwang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lee, Jong-Yeol
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ha, Sun-Hwa
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Plant physiology and biochemistry : PPB
|d 1991
|g 109(2016) vom: 14. Dez., Seite 482-490
|w (DE-627)NLM098178261
|x 1873-2690
|7 nnns
|
773 |
1 |
8 |
|g volume:109
|g year:2016
|g day:14
|g month:12
|g pages:482-490
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1016/j.plaphy.2016.10.028
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 109
|j 2016
|b 14
|c 12
|h 482-490
|