RNAi-mediated suppression of dihydroflavonol 4-reductase in tobacco allows fine-tuning of flower color and flux through the flavonoid biosynthetic pathway

Copyright © 2016 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 109(2016) vom: 14. Dez., Seite 482-490
1. Verfasser: Lim, Sun-Hyung (VerfasserIn)
Weitere Verfasser: You, Min-Kyung, Kim, Da-Hye, Kim, Jae Kwang, Lee, Jong-Yeol, Ha, Sun-Hwa
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Anthocyanin DFR FLS Metabolic flux Post transcriptional gene silencing Proanthocyanidin Tobacco Flavonoids Plant Proteins mehr... RNA, Messenger RNA, Plant Alcohol Oxidoreductases EC 1.1.- dihydroflavanol 4-reductase EC 1.1.1.-
Beschreibung
Zusammenfassung:Copyright © 2016 Elsevier Masson SAS. All rights reserved.
To examine flux regulation in the flavonoid pathway of tobacco flowers, we suppressed two genes for dihydroflavonol 4-reductase (NtDFR 1 and 2) by RNA interference (Ri)-mediated post transcriptional gene silencing in pink-flowered tobacco. Two phenotypes were observed, pale pink (DFR-Ri_PP)- and white (DFR-Ri_W)-flowered lines. The relative mRNA levels of NtDFR genes in DFR-Ri_PP and DFR-Ri_W lines were reduced by 79%-95% relative to non-transformed (NT) plants. DFR-Ri_W lines had five-fold higher levels of small interference RNAs compared to DFR-Ri_PP lines. Expression of eight structural genes in the flavonoid pathway was significantly increased in DFR-Ri_W lines but not in DFR-Ri_PP lines based on quantitative RT-PCR. Anthocyanin contents correlated with flower color, with a reduction of 72%-97% in DFR-Ri_PP and DFR-Ri_W lines. Decreases in anthocyanin in flower were proportional with reductions of proanthocyanidin content in seeds. Two pale pink lines, DFR-Ri_PP 17 and 20, with anthocyanin decreases and the lowest level of DFR gene silencing, had higher (dihydro) flavonol production than a white flowered line, DFR-Ri_W 67. This finding suggests that suppression of DFR can increase the total levels of flavonoids due to (dihydro) flavonol biosynthesis. Our observations that higher suppression of DFR had a greater influence on the expression of flavonoid biosynthetic genes demonstrates the key role of DFR in the pathway and allows selection among DFR-Ri lines for plants with specific gene expression profiles to fine-tune flux through the pathway
Beschreibung:Date Completed 10.04.2017
Date Revised 13.12.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2016.10.028