A Data-Driven Point Cloud Simplification Framework for City-Scale Image-Based Localization

City-scale 3D point clouds reconstructed via structure-from-motion from a large collection of Internet images are widely used in the image-based localization task to estimate a 6-DOF camera pose of a query image. Due to prohibitive memory footprint of city-scale point clouds, image-based localizatio...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 1 vom: 04. Jan., Seite 262-275
1. Verfasser: Cheng, Wentao (VerfasserIn)
Weitere Verfasser: Lin, Weisi, Zhang, Xinfeng, Goesele, Michael, Sun, Ming-Ting
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM266083935
003 DE-627
005 20231224213713.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0886.xml 
035 |a (DE-627)NLM266083935 
035 |a (NLM)27831876 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cheng, Wentao  |e verfasserin  |4 aut 
245 1 2 |a A Data-Driven Point Cloud Simplification Framework for City-Scale Image-Based Localization 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a City-scale 3D point clouds reconstructed via structure-from-motion from a large collection of Internet images are widely used in the image-based localization task to estimate a 6-DOF camera pose of a query image. Due to prohibitive memory footprint of city-scale point clouds, image-based localization is difficult to be implemented on devices with limited memory resources. Point cloud simplification aims to select a subset of points to achieve a comparable localization performance using the original point cloud. In this paper, we propose a data-driven point cloud simplification framework by taking it as a weighted K-Cover problem, which mainly includes two complementary parts. First, a utility-based parameter determination method is proposed to select a reasonable parameter K for K-Cover-based approaches by evaluating the potential of a point cloud for establishing sufficient 2D-3D feature correspondences. Second, we formulate the 3D point cloud simplification problem as a weighted K-Cover problem, and propose an adaptive exponential weight function based on the visibility probability of 3D points. The experimental results on three popular datasets demonstrate that the proposed point cloud simplification framework outperforms the state-of-the-art methods for the image-based localization application with a well predicted parameter in the K-Cover problem 
650 4 |a Journal Article 
700 1 |a Lin, Weisi  |e verfasserin  |4 aut 
700 1 |a Zhang, Xinfeng  |e verfasserin  |4 aut 
700 1 |a Goesele, Michael  |e verfasserin  |4 aut 
700 1 |a Sun, Ming-Ting  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 1 vom: 04. Jan., Seite 262-275  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:1  |g day:04  |g month:01  |g pages:262-275 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 1  |b 04  |c 01  |h 262-275