A MULTIVARIATE FINITE MIXTURE LATENT TRAJECTORY MODEL WITH APPLICATION TO DEMENTIA STUDIES

Dementia patients exhibit considerable heterogeneity in individual trajectories of cognitive decline, with some patients showing rapid decline following diagnoses while others exhibiting slower decline or remaining stable for several years. Dementia studies often collect longitudinal measures of mul...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 43(2016), 14 vom: 01., Seite 2503-2523
1. Verfasser: Lai, Dongbing (VerfasserIn)
Weitere Verfasser: Xu, Huiping, Koller, Daniel, Foroud, Tatiana, Gao, Sujuan
Format: Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Multivariate finite mixture latent trajectory cognitive decline dementia
LEADER 01000caa a22002652 4500
001 NLM264457781
003 DE-627
005 20240610235308.0
007 tu
008 231224s2016 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n1435.xml 
035 |a (DE-627)NLM264457781 
035 |a (NLM)27642206 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lai, Dongbing  |e verfasserin  |4 aut 
245 1 2 |a A MULTIVARIATE FINITE MIXTURE LATENT TRAJECTORY MODEL WITH APPLICATION TO DEMENTIA STUDIES 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 10.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Dementia patients exhibit considerable heterogeneity in individual trajectories of cognitive decline, with some patients showing rapid decline following diagnoses while others exhibiting slower decline or remaining stable for several years. Dementia studies often collect longitudinal measures of multiple neuropsychological tests aimed to measure patients' decline across a number of cognitive domains. We propose a multivariate finite mixture latent trajectory model to identify distinct longitudinal patterns of cognitive decline simultaneously in multiple cognitive domains, each of which is measured by multiple neuropsychological tests. EM algorithm is used for parameter estimation and posterior probabilities are used to predict latent class membership. We present results of a simulation study demonstrating adequate performance of our proposed approach and apply our model to the Uniform Data Set (UDS) from the National Alzheimer's Coordinating Center (NACC) to identify cognitive decline patterns among dementia patients 
650 4 |a Journal Article 
650 4 |a Multivariate finite mixture latent trajectory 
650 4 |a cognitive decline 
650 4 |a dementia 
700 1 |a Xu, Huiping  |e verfasserin  |4 aut 
700 1 |a Koller, Daniel  |e verfasserin  |4 aut 
700 1 |a Foroud, Tatiana  |e verfasserin  |4 aut 
700 1 |a Gao, Sujuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 43(2016), 14 vom: 01., Seite 2503-2523  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:43  |g year:2016  |g number:14  |g day:01  |g pages:2503-2523 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2016  |e 14  |b 01  |h 2503-2523