A MULTIVARIATE FINITE MIXTURE LATENT TRAJECTORY MODEL WITH APPLICATION TO DEMENTIA STUDIES

Dementia patients exhibit considerable heterogeneity in individual trajectories of cognitive decline, with some patients showing rapid decline following diagnoses while others exhibiting slower decline or remaining stable for several years. Dementia studies often collect longitudinal measures of mul...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 43(2016), 14 vom: 01., Seite 2503-2523
1. Verfasser: Lai, Dongbing (VerfasserIn)
Weitere Verfasser: Xu, Huiping, Koller, Daniel, Foroud, Tatiana, Gao, Sujuan
Format: Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Multivariate finite mixture latent trajectory cognitive decline dementia
Beschreibung
Zusammenfassung:Dementia patients exhibit considerable heterogeneity in individual trajectories of cognitive decline, with some patients showing rapid decline following diagnoses while others exhibiting slower decline or remaining stable for several years. Dementia studies often collect longitudinal measures of multiple neuropsychological tests aimed to measure patients' decline across a number of cognitive domains. We propose a multivariate finite mixture latent trajectory model to identify distinct longitudinal patterns of cognitive decline simultaneously in multiple cognitive domains, each of which is measured by multiple neuropsychological tests. EM algorithm is used for parameter estimation and posterior probabilities are used to predict latent class membership. We present results of a simulation study demonstrating adequate performance of our proposed approach and apply our model to the Uniform Data Set (UDS) from the National Alzheimer's Coordinating Center (NACC) to identify cognitive decline patterns among dementia patients
Beschreibung:Date Revised 10.06.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:0266-4763