Hyperspectral Unmixing in Presence of Endmember Variability, Nonlinearity, or Mismodeling Effects

This paper presents three hyperspectral mixture models jointly with Bayesian algorithms for supervised hyperspectral unmixing. Based on the residual component analysis model, the proposed general formulation assumes the linear model to be corrupted by an additive term whose expression can be adapted...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 25(2016), 10 vom: 14. Okt., Seite 4565-79
1. Verfasser: Halimi, Abderrahim (VerfasserIn)
Weitere Verfasser: Honeine, Paul, Bioucas-Dias, Jose M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM262429527
003 DE-627
005 20231224201725.0
007 cr uuu---uuuuu
008 231224s2016 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2016.2590324  |2 doi 
028 5 2 |a pubmed24n0874.xml 
035 |a (DE-627)NLM262429527 
035 |a (NLM)27416597 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Halimi, Abderrahim  |e verfasserin  |4 aut 
245 1 0 |a Hyperspectral Unmixing in Presence of Endmember Variability, Nonlinearity, or Mismodeling Effects 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.05.2017 
500 |a Date Revised 23.05.2017 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper presents three hyperspectral mixture models jointly with Bayesian algorithms for supervised hyperspectral unmixing. Based on the residual component analysis model, the proposed general formulation assumes the linear model to be corrupted by an additive term whose expression can be adapted to account for nonlinearities (NLs), endmember variability (EV), or mismodeling effects (MEs). The NL effect is introduced by considering a polynomial expression that is related to bilinear models. The proposed new formulation of EV accounts for shape and scale endmember changes while enforcing a smooth spectral/spatial variation. The ME formulation considers the effect of outliers and copes with some types of EV and NL. The known constraints on the parameter of each observation model are modeled via suitable priors. The posterior distribution associated with each Bayesian model is optimized using a coordinate descent algorithm, which allows the computation of the maximum a posteriori estimator of the unknown model parameters. The proposed mixture and Bayesian models and their estimation algorithms are validated on both synthetic and real images showing competitive results regarding the quality of the inferences and the computational complexity, when compared with the state-of-the-art algorithms 
650 4 |a Journal Article 
700 1 |a Honeine, Paul  |e verfasserin  |4 aut 
700 1 |a Bioucas-Dias, Jose M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 25(2016), 10 vom: 14. Okt., Seite 4565-79  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:25  |g year:2016  |g number:10  |g day:14  |g month:10  |g pages:4565-79 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2016.2590324  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2016  |e 10  |b 14  |c 10  |h 4565-79